SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

COURSE OUTLINE:	A.C. CIRCUIT ANALYSIS AND MACHINES
CODE NO.:	ELR 1Ø9
PROGRAM:	ELECTRICAL/ELECTRONIC TECHNOLOGY
SEMESTER:	TWO
DATE:	JANUARY 1990
PREVIOUS OUTLINE DATED:	FEB. 28, 1989
AUTHOR :	R. MCTAGGART

. 1

ELR 109 CODE NO.

TOTAL CREDIT HOURS: 75

PREREQUISITE(S): ELR 100

PHILOSOPHY/GOALS:

AN ANALYTICAL STUDY OF SERIES, PARALLEL AND SERIES-PARALLEL IMPEDANCE NETWORKS, NETWORK THEOREMS AND POLYPHASE CIRCUITS. CONCURRENTLY AN INTRODUCTION TO AC AND DC MOTORS AND GENERATORS TOGETHER WITH THEIR CONTROL METHODS IS STUDIED. RELATED PRACTICAL EXERCISES.

STUDENT PERFORMANCE OBJECTIVES:

UPON SUCCESSFUL COMPLETION OF THIS COURSE, THE STUDENT WILL BE ABLE TO:

1. ANALYZE FUNDAMENTAL AC NETWORKS.

2. HAVE A BASIC UNDERSTANDING OF DC MACHINES.

3. HAVE A BASIC UNDERSTANDING OF AC MACHINES.

TOPICS TO BE COVERED:

1. SERIES & PARALLEL AC CIRCUITS.

2. POWER IN AC CIRCUITS.

3. AC NETWORK ANALYSIS.

4. RESONANCE.

5. POLYPHASE AC SYSTEMS.

6. MAGNETIC CIRCUIT CALCULATIONS.

7. PRINCIPLES OF DC MACHINES.

8. DC GENERATORS.

9. DC MOTORS.

10. AC POWER GENERATION.

11. TRANSFORMERS.

12. POLYPHASE INDUCTION MOTORS.

13. SINGLE PHASE MOTORS.

14. THREE PHASE SYNCHRONOUS MOTORS.

15. STARTING AND CONTROL OF AC MOTORS.

- 2 -

ELR 109 CODE NO.

	LEARNING ACTIVITIES	I	REQUIRED RESOURCES
		TEXT:	FUNDAMENTALS OF ELECTRIC CIRCUITS. 4TH ED., D.A. BELL
1.	SERIES & PARALLEL AC CIRCUITS - ANALYZE USING POLAR, RECTANG- ULAR AND PHASOR DIAGRANS	CH.2Ø	
2.	POWER IN AC CIRCUITS - REAL AND REACTIVE POWER - POWER FACTOR - DECIBEL MEASUREMENT OF POWER	CH.21	
3.	AC NETWORK ANALYSIS - THEVENIN'S THEOREM - SUPERPOSITION - MAXIMUM POWER TRANSFER - DELTA - WYE TRANSFORMATIONS	CH.22	
4.	RESONANCE - SERIES AND PARALLEL RESONANCE IN RLC CIRCUITS - ENERGY TRANSFER BETWEEN L & C	CH.23	
5.	POLYPHASE AC SYSTEMS - GENERATION OF THREE PHASE VOLTAGES - WYE CONNECTED ALTERNATOR - WYE CONNECTED LOADS - DELTA CONNECTED ALTERNATOR - DELTA CONNECTED LOADS - WYE-DELTA WYE-WYE AND	CH.26	.1
	DELTA-DELTA SYSTEMS - THREE PHASE POWER, POWER FACTOR AND POWER MEASUREMENT	TEXT:	ELECTRICAL MACHINES AND TRANSFORMERS. RYFF, PLATNICK, KARNAS
6.	MAGNETIC CIRCUIT CALCULATIONS - REVIEW OF ELECTROMAGNETIC PRINCIPLES - ANALYSIS OF MAGNETIC CIRCUITS	CH.1	
7.	PRINCIPLES OF DC MACHINES - PRINCIPLE OF GENERATOR ACTION - COMMUTATION - WINDINGS AND WINDING DIAGRAMS - PRINCIPLES OF MOTOR ACTION - MACHINE CONSTRUCTION	CH.2	

ELR 109 CODE NO.

	LEARNING ACTIVITIES		REQUIRED	RESOURCES
8.	DC GENERATORS - GENERATOR EQUIVALENT CIRCUITS - TYPES OF DC GENERATORS - CHARACTERISTICS OF DC GENERATORS - ANALYZING GENERATOR OPERATION	CH.3		
9.	DC MOTORS - MOTOR EQUIVALENT CIRCIUTS - CLASSIFICATION OF DC MOTORS - CHARACTERISTICS OF DC MOTORS - ANALYZING MOTOR OPERATION - STARTING AND CONTROL OF DC MOTORS - FOUR QUADRANT OPERATION OF DC MACHINES	CH.4,	δ	
10.	 AC POWER GENERATION CONSTRUCTION AND OPERATION OF AC GENERATORS CHARACTERISTICS OF AC GENERATORS WINDINGS AND WINDING DIAGRAMS EQUIVALENT CIRCUITS AND PHASOR DIAGRAMS 	CH.6,	7	
11.	TRANSFORMERS - PRINCIPLE OF OPERATION - TYPES AND CONSTRUCTION - EQUIVALENT CIRCUITS AND PHASOR DIAGRAMS - INSTRUMENT TRANSFORMERS	CH.8,	9	.1
12.	POLYPHASE INDUCTION MOTORS - PRINCIPLE OF OPERATION - EQUIVALENT CIRCUIT - TYPES AND CONSTRUCTION - OPERATING CHARACTERISTICS	CH.1Ø		
13.	SINGLE PHASE MOTORS - PRINCIPLE OF OPERATION - TYPES AND CONSTRUCTION - OPERATING CHARACTERISTICS	CH.11		

4 -

ELR 109 CODE NO.

. .

	LEARNING ACTIVITIES		REQUIRED RESOURCES
14.	THREE PHASE SYNCHRONOUS MOTORS - PRINCIPLE OF OPERATION - OPERATING CHARACTERISTICS - POWER FACTOR CORRECTION		CH.12
15.	STARTING AND CONTROL OF AC MOTORS		CH.13

1

ADDITIONAL RESOURCE MATERIALS:

AC CCTS & MACHINES COURSE NAME	ELR 109 CODE NO.
METHOD(S) OF EVALUATION	
TESTS 70%	
TOTAL 100%	

THE GRADING SYSTEM USED WILL BE AS FOLLOWS:

A+ = 9Ø - 1ØØ% A = 8Ø - 89% B = 65 - 79% C = 55 - 64% R REPEAT

REQUIRED STUDENT RESOURCES:

TEXT BOOKS: 1. FUNDAMENTALS OF ELECTRIC CIRCUITS. 4TH ED., DAVID A. BELL

> 2. ELECTRICAL MACHINES AND TRANSFORMERS. PRINCIPLES AND APPLICATIONS. P. F. RYFF, D. PLATNICK, J. A. KARNAS

> > 2

ADDITIONAL RESOURCE MATERIALS AVAILABLE IN THE COLLEGE LIBRARY BOOK SECTION:

SPECIAL NOTES:

- 6 -